Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

AlxGa1-xSb window layers for InGaAsSb/GaSb thermophotovoltaic cells

Identifieur interne : 014222 ( Main/Repository ); précédent : 014221; suivant : 014223

AlxGa1-xSb window layers for InGaAsSb/GaSb thermophotovoltaic cells

Auteurs : RBID : Pascal:99-0281864

Descripteurs français

English descriptors

Abstract

We report results of a comparative study of AlSb-based window layers for InGaAsSb/GaSb TPV cells made by liquid-phase epitaxy (LPE). Previous work has shown that an AlGaAsSb window layer significantly improves the performance of InGaAsSb/GaSb TPV cells. As expected, the window layer enhances short-wavelength spectral response and increases the open-circuit voltage by reducing the reverse-saturation current of the diode. We present results for a simpler alternative window layer based on the ternary AlGaSb alloy. We fabricated, characterized, and compared InGaAsAsSb TPV of three types: 1. with an AlGaAsSb window layer, 2. with an AlAsSb window layer, and 3. with no window layer. Both p-on-n (p-type InGaAsSb emitter; n-type InGaAsSb base) and n-on-p (n-type InGaAsSb emitter; p-type InGaAsSb base) homojunction cell configurations were investigated. The InGaAsSb layers have a ∼0.55-ev bandgap and are lattice-matched to a GaSb substrate. As anticipated, both AlGaSb and AlGaAsSb passivated TPV cells were superior to cells without a window layer. The AlGaAsSb/InGaAsSb window/emitter interface is closely lattice matched and would be expected to provide better surface passivation than AlGaSb/InGaAsSb window/emitter interface which has a 0.6% lattice mismatch. On the contrary, our experimental results showed that, based on a comparison of spectral response, AlGaSb window layers were somewhat more effective than AlGaAsSb in passivating the front surface of InGaAsSb diodes. These results demonstrate the viability of a simpler ternary AlGaSb alloy as an alternative to the quaternary AlGaAsSb alloy as a window layer material. © 1999 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:99-0281864

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Al
<sub>x</sub>
Ga
<sub>1-x</sub>
Sb window layers for InGaAsSb/GaSb thermophotovoltaic cells</title>
<author>
<name sortKey="South, Joseph T" uniqKey="South J">Joseph T. South</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Materials Science and Engineering, University of Delaware, Newark, Delaware 19716-2000</s1>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>Materials Science and Engineering, University of Delaware, Newark</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shellenbarger, Zane A" uniqKey="Shellenbarger Z">Zane A. Shellenbarger</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>AstroPower, Inc., Solar Park, Newark, Delaware 19716-2000</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>AstroPower, Inc., Solar Park, Newark</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mauk, Michael G" uniqKey="Mauk M">Michael G. Mauk</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Materials Science and Engineering, University of Delaware, Newark, Delaware 19716-2000</s1>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>Materials Science and Engineering, University of Delaware, Newark</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>AstroPower, Inc., Solar Park, Newark, Delaware 19716-2000</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>AstroPower, Inc., Solar Park, Newark</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cox, Jeffrey A" uniqKey="Cox J">Jeffrey A. Cox</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>AstroPower, Inc., Solar Park, Newark, Delaware 19716-2000</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>AstroPower, Inc., Solar Park, Newark</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sims, Paul E" uniqKey="Sims P">Paul E. Sims</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>AstroPower, Inc., Solar Park, Newark, Delaware 19716-2000</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>AstroPower, Inc., Solar Park, Newark</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mueller, Robert A" uniqKey="Mueller R">Robert A. Mueller</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Jet Propulsion Laboratory, Pasadena, California</s1>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Jet Propulsion Laboratory, Pasadena</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Meakin, John D" uniqKey="Meakin J">John D. Meakin</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Materials Science and Engineering, University of Delaware, Newark, Delaware 19716-2000</s1>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>Materials Science and Engineering, University of Delaware, Newark</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">99-0281864</idno>
<date when="1999-03-10">1999-03-10</date>
<idno type="stanalyst">PASCAL 99-0281864 AIP</idno>
<idno type="RBID">Pascal:99-0281864</idno>
<idno type="wicri:Area/Main/Corpus">014F37</idno>
<idno type="wicri:Area/Main/Repository">014222</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0094-243X</idno>
<title level="j" type="abbreviated">AIP conf. proc.</title>
<title level="j" type="main">AIP conference proceedings</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium compounds</term>
<term>Antimony compounds</term>
<term>Direct energy conversion</term>
<term>Emissivity</term>
<term>Experimental study</term>
<term>Fabrication</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium antimonides</term>
<term>LPE</term>
<term>Lattice parameters</term>
<term>Optical windows</term>
<term>Passivation</term>
<term>Performance</term>
<term>Performance evaluation</term>
<term>Quaternary alloy systems</term>
<term>Spectral response</term>
<term>Ternary alloy systems</term>
<term>Thermophotovoltaic converters</term>
<term>thermophotovoltaic cells</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8460B</term>
<term>8460J</term>
<term>8920</term>
<term>Etude expérimentale</term>
<term>Convertisseur thermophotovoltaïque</term>
<term>Conversion directe énergie</term>
<term>Gallium arséniure</term>
<term>Indium antimoniure</term>
<term>Performance</term>
<term>Paramètre cristallin</term>
<term>Emissivité</term>
<term>Fabrication</term>
<term>Réponse spectrale</term>
<term>Système alliage ternaire</term>
<term>Système alliage quaternaire</term>
<term>Epitaxie phase liquide</term>
<term>Semiconducteur III-V</term>
<term>Passivation</term>
<term>Fenêtre optique</term>
<term>Aluminium composé</term>
<term>Antimoine composé</term>
<term>Evaluation performance</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report results of a comparative study of AlSb-based window layers for InGaAsSb/GaSb TPV cells made by liquid-phase epitaxy (LPE). Previous work has shown that an AlGaAsSb window layer significantly improves the performance of InGaAsSb/GaSb TPV cells. As expected, the window layer enhances short-wavelength spectral response and increases the open-circuit voltage by reducing the reverse-saturation current of the diode. We present results for a simpler alternative window layer based on the ternary AlGaSb alloy. We fabricated, characterized, and compared InGaAsAsSb TPV of three types: 1. with an AlGaAsSb window layer, 2. with an AlAsSb window layer, and 3. with no window layer. Both p-on-n (p-type InGaAsSb emitter; n-type InGaAsSb base) and n-on-p (n-type InGaAsSb emitter; p-type InGaAsSb base) homojunction cell configurations were investigated. The InGaAsSb layers have a ∼0.55-ev bandgap and are lattice-matched to a GaSb substrate. As anticipated, both AlGaSb and AlGaAsSb passivated TPV cells were superior to cells without a window layer. The AlGaAsSb/InGaAsSb window/emitter interface is closely lattice matched and would be expected to provide better surface passivation than AlGaSb/InGaAsSb window/emitter interface which has a 0.6% lattice mismatch. On the contrary, our experimental results showed that, based on a comparison of spectral response, AlGaSb window layers were somewhat more effective than AlGaAsSb in passivating the front surface of InGaAsSb diodes. These results demonstrate the viability of a simpler ternary AlGaSb alloy as an alternative to the quaternary AlGaAsSb alloy as a window layer material. © 1999 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0094-243X</s0>
</fA01>
<fA02 i1="01">
<s0>APCPCS</s0>
</fA02>
<fA03 i2="1">
<s0>AIP conf. proc.</s0>
</fA03>
<fA05>
<s2>460</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Al
<sub>x</sub>
Ga
<sub>1-x</sub>
Sb window layers for InGaAsSb/GaSb thermophotovoltaic cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SOUTH (Joseph T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHELLENBARGER (Zane A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MAUK (Michael G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>COX (Jeffrey A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SIMS (Paul E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MUELLER (Robert A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MEAKIN (John D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Materials Science and Engineering, University of Delaware, Newark, Delaware 19716-2000</s1>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>AstroPower, Inc., Solar Park, Newark, Delaware 19716-2000</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Jet Propulsion Laboratory, Pasadena, California</s1>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>545-554</s1>
</fA20>
<fA21>
<s1>1999-03-10</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21757</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 1999 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>99-0281864</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>AIP conference proceedings</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report results of a comparative study of AlSb-based window layers for InGaAsSb/GaSb TPV cells made by liquid-phase epitaxy (LPE). Previous work has shown that an AlGaAsSb window layer significantly improves the performance of InGaAsSb/GaSb TPV cells. As expected, the window layer enhances short-wavelength spectral response and increases the open-circuit voltage by reducing the reverse-saturation current of the diode. We present results for a simpler alternative window layer based on the ternary AlGaSb alloy. We fabricated, characterized, and compared InGaAsAsSb TPV of three types: 1. with an AlGaAsSb window layer, 2. with an AlAsSb window layer, and 3. with no window layer. Both p-on-n (p-type InGaAsSb emitter; n-type InGaAsSb base) and n-on-p (n-type InGaAsSb emitter; p-type InGaAsSb base) homojunction cell configurations were investigated. The InGaAsSb layers have a ∼0.55-ev bandgap and are lattice-matched to a GaSb substrate. As anticipated, both AlGaSb and AlGaAsSb passivated TPV cells were superior to cells without a window layer. The AlGaAsSb/InGaAsSb window/emitter interface is closely lattice matched and would be expected to provide better surface passivation than AlGaSb/InGaAsSb window/emitter interface which has a 0.6% lattice mismatch. On the contrary, our experimental results showed that, based on a comparison of spectral response, AlGaSb window layers were somewhat more effective than AlGaAsSb in passivating the front surface of InGaAsSb diodes. These results demonstrate the viability of a simpler ternary AlGaSb alloy as an alternative to the quaternary AlGaAsSb alloy as a window layer material. © 1999 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D05I03G</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D17</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8460B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8460J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>8920</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Convertisseur thermophotovoltaïque</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thermophotovoltaic converters</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Conversion directe énergie</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Direct energy conversion</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium antimoniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium antimonides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Performance</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Performance</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Paramètre cristallin</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Lattice parameters</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Emissivité</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Emissivity</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Fabrication</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Fabrication</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Réponse spectrale</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Spectral response</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Système alliage ternaire</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ternary alloy systems</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Système alliage quaternaire</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Quaternary alloy systems</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>thermophotovoltaic cells</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Epitaxie phase liquide</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>LPE</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Passivation</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Passivation</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Fenêtre optique</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Optical windows</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Antimoine composé</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Antimony compounds</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Evaluation performance</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Performance evaluation</s0>
</fC03>
<fN21>
<s1>172</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9923M000090</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 014222 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 014222 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:99-0281864
   |texte=   AlxGa1-xSb window layers for InGaAsSb/GaSb thermophotovoltaic cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024